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ABSTRACT. This article presents an empirical study carried out to evaluate and 
analyze sustainable Industry 4.0. Building our argument by drawing on data collected 
from Capgemini, Deloitte, McKinsey, MHI, we.CONECT, and World Economic Fo- 
rum, we performed analyses and made estimates regarding the relationship between 
product decision-making information systems, real-time big data analytics, and deep 
learning-enabled smart process planning. Data collected from 4,600 respondents are 
tested against the research model by using structural equation modeling. 
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1. Introduction 
 
Industry 4.0 generates significant alterations to the structure of manufacturing 
plants concerning their value proposition (Andrei et al., 2016a, b; Hoffman 
and Friedman, 2018; Nica, 2015) and the advancement of their production in- 
terconnected system, supplier base, and customer networks. (Culot et al., 2020)  

 
2. Conceptual Framework and Literature Review 
 
By networking machines, parts, and systems (Andrei et al., 2020; Krizanova 
et al., 2019; Lăzăroiu et al., 2019; Mihăilă et al., 2018; Popescu et al., 2018a, 
b), smart shared interconnected channels can be configured throughout the 
supply chain (Lăzăroiu et al., 2017; Majerova et al., 2020; Nica et al., 2014; 
Popescu, 2014; Reicher, 2019), articulating smart manufacturing by self-
governing supervision. (Zolotová et al., 2020) Large-scale product custom- 
ization requires companies to swiftly react to customer demands, flexibly 
reorganize equipment and calibrate operational specifications for accidental 
system breakdowns and product quality issues (Dușmănescu et al., 2016), and 
modernize obsolete systems with cutting-edge technologies. (Kim et al., 2020) 

 
3. Methodology and Empirical Analysis 
 
Building our argument by drawing on data collected from Capgemini, Deloitte, 
McKinsey, MHI, we.CONECT, and World Economic Forum, we performed 
analyses and made estimates regarding the relationship between product 
decision-making information systems, real-time big data analytics, and deep 
learning-enabled smart process planning. Data collected from 4,600 respon- 
dents are tested against the research model by using structural equation 
modeling. 

 
4. Results and Discussion 
 
The workplace monitoring system advances towards adjustable smart manu- 
facturing (Lăzăroiu, 2018; Lăzăroiu et al., 2020a, b; Mihăilă, 2017; Mogh- 
tader, 2018; Pilkington, 2018; Popescu et al., 2019) through heterogeneous 
customer requirements. (Li et al., 2020) To scale up the machine learning pat- 
terns for data inspection, huge volumes of data are needed to train them and 
facilitate incessant model updates. (Lewis Bowler et al., 2020) (Tables 1–8)  
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Table 1 % of contributors to success with data and analytics (asked of those  
              who reported being effective at meeting objectives) 
Constructing a strategy to pursue data and analytics 36 
Ensuring senior-management leadership of analytics  33 
Designing effective data architecture/technology infrastructure  
to support analytics activities 

26 

Developing a workforce that understands how to use analytics 25 
Getting business users to apply analytics insights  
consistently in day-to-day work. 

22 

Sources: McKinsey; our survey among 4,600 individuals conducted June 2020.  
 
Table 2 What advantages/optimizations do you expect for your company  
              through Industry 4.0/Industrial Internet of Things? (%) 
Increased efficiency 42 
Competitiveness 27 
Increased productivity 24 
Faster decision-making 19 
Reduction of costs 14 
Increase in sales 9 
Increase in quality 7 
Sources: we.CONECT; our survey among 4,600 individuals conducted June 2020.  
 
Table 3 Which topics/production areas will become more important  
              in your company in the next 12 months? (%) 
Big data/Data analytics 29 
Cloud/Internet of Things platforms 19 
Operational excellence 17 
Production: IT/MES 14 
Human machine collaboration 12 
Robotics 11 
Sensor/Automation technology 10 
Cyber security 9 
Additive manufacturing 6 
Predictive maintenance 7 
Sources: we.CONECT; our survey among 4,600 individuals conducted June 2020.  
 
Table 4 Actions taken in preparation for the changes in the next 10 years (%) 
Partnering with vendors to better understand applications and benefits 52 
Began piloting new technologies 48 
Increased investment/budget for innovative technologies 45 
Recruiting for different skillsets to align with future needs 42 
Changing organizational structure/incentives to create innovation culture 39 
Reskilling and training workers for emerging technologies 36 
Sources: MHI; Deloitte; our survey among 4,600 individuals conducted June 2020.  
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Table 5 The most valuable 5G-enabled use cases  
              for shop floor and supply chain areas (%) 
Real-time analytics leveraging edge computing 87 
Video surveillance of remote production lines 84 
Remote control of distributed production line 82 
Artificial intelligence-enabled and remote-controlled motion 
(e.g., collaborative robots, self-driven cars, drones) 

79 

Real-time service and breakdown alerts 77 
Remote operations/maintenance/training solutions through AR/VR 75 
Predictive/preventive maintenance 73 
Self-triggered order placement based on inventory level 82 
Virtual testing of parts and packing from suppliers 80 
Remote monitoring of en-route shipment 
conditions (e g., temperature, humidity) 

77 

Sources: Capgemini; our survey among 4,600 individuals conducted June 2020.  
 
Table 6 Industry 4.0 priorities on which organizations have made progress  
              by having comprehensive, holistic strategies (%) 
Protecting our organization from disruption  79 
Developing innovative/differentiated products and services  64 
Finding growth opportunities for existing products and services  62 
Making effective Industry 4.0 technology investments  80 
Connected, integrated approach to implement Industry 4.0 technologies  57 
Attracting and retaining the right talent  59 
Understanding what skills will be needed  76 
Training and developing workforce  78 
Utilizing new labor models  82 
Making a profit while positively contributing to society  74 
Investing in Industry 4.0 tech with a positive societal impact  62 
Sources: Deloitte; our survey among 4,600 individuals conducted June 2020.  

 
Table 7 Projected (2022) strategies to address shifting skills needs,  
              by proportion of companies (%, likely) 
Hire new permanent staff with skills relevant to new technologies 86 
Look to automate the work  84 
Retrain existing employees  69 
Expect existing employees to pick up skills on the job 68 
Outsource some business functions to external contractors 67 
Hire new temporary staff with skills relevant to new technologies 65 
Hire freelancers with skills relevant to new technologies  57 
Strategic redundancies of staff who lack the skills to use new technologies  50 
Sources: World Economic Forum; our survey among 4,600 individuals conducted June 2020.  
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Table 8 % of challenges to success with data and analytics (asked of those  
              who reported being ineffective at meeting objectives) 
Constructing a strategy to pursue data and analytics 42 
Designing effective data architecture/technology infrastructure  
to support analytics activities 

33 

Securing talent with skills required to develop data and analytics projects 27 
Ensuring senior-management leadership of analytics 26 
Developing a workforce that understands how to use analytics 20 
Sources: McKinsey; our survey among 4,600 individuals conducted June 2020.  

 
5. Conclusions and Implications 
 
Machine learning procedures necessitates massive quantities of quality train- 
ing datasets, while concerning supervised machine learning, manual input is 
routinely needed for labeling them. (Alexopoulos et al., 2020) The volume 
of data gathered and distributed has improved both predictive precision and 
enablement of prescriptive solutions. (Schniederjans et al., 2020) 
 
Survey method 
The interviews were conducted online and data were weighted by five variables 
(age, race/ethnicity, gender, education, and geographic region) using the Census 
Bureau’s American Community Survey to reflect reliably and accurately the 
demographic composition of the United States. Sampling errors and test of statistical 
significance take into account the effect of weighting. Stratified sampling methods 
were used and weights were trimmed not to exceed 3. Average margins of error, at 
the 95% confidence level, are +/-2%. For tabulation purposes, percentage points are 
rounded to the nearest whole number. The precision of the online polls was 
measured using a Bayesian credibility interval. An Internet-based survey software 
program was utilized for the delivery and collection of responses. 
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