

Journal of Self-Governance and Management Economics 8(3), 2020 pp. 16–22, ISSN 2329-4175, eISSN 2377-0996

# Product Decision-Making Information Systems, Real-Time Big Data Analytics, and Deep Learning-enabled Smart Process Planning in Sustainable Industry 4.0

### **Elisabeth Peters**

e.peters@aa-er.org The Cognitive Artificial Intelligence Systems Laboratory at ISBDA, Cambridge, England (corresponding author) **Tomas Kliestik** tomas.kliestik@fpedas.uniza.sk Faculty of Operation and Economics of Transport and Communications, Department of Economics, University of Zilina, Zilina, Slovak Republic Hussam Musa hussam.musa@umb.sk Faculty of Economics, Matej Bel University, Banska Bystrica, Slovak Republic **Pavol Durana** pavol.durana@fpedas.uniza.sk Faculty of Operation and Economics of Transport and Communications, Department of Economics, University of Zilina, Zilina, Slovak Republic

ABSTRACT. This article presents an empirical study carried out to evaluate and analyze sustainable Industry 4.0. Building our argument by drawing on data collected from Capgemini, Deloitte, McKinsey, MHI, we.CONECT, and World Economic Forum, we performed analyses and made estimates regarding the relationship between product decision-making information systems, real-time big data analytics, and deep learning-enabled smart process planning. Data collected from 4,600 respondents are tested against the research model by using structural equation modeling.

## JEL codes: E24; J21; J54; J64

Keywords: big data analytics; Industry 4.0; smart process planning; deep learning

How to cite: Peters, E., Kliestik, T., Musa, H., and Durana, P. (2020). "Product Decision-Making Information Systems, Real-Time Big Data Analytics, and Deep Learning-enabled Smart Process Planning in Sustainable Industry 4.0," *Journal of Self-Governance and Management Economics* 8(3): 16–22. doi:10.22381/JSME8320202



# 1. Introduction

Industry 4.0 generates significant alterations to the structure of manufacturing plants concerning their value proposition (Andrei et al., 2016a, b; Hoffman and Friedman, 2018; Nica, 2015) and the advancement of their production interconnected system, supplier base, and customer networks. (Culot et al., 2020)

# 2. Conceptual Framework and Literature Review

By networking machines, parts, and systems (Andrei et al., 2020; Krizanova et al., 2019; Lăzăroiu et al., 2019; Mihăilă et al., 2018; Popescu et al., 2018a, b), smart shared interconnected channels can be configured throughout the supply chain (Lăzăroiu et al., 2017; Majerova et al., 2020; Nica et al., 2014; Popescu, 2014; Reicher, 2019), articulating smart manufacturing by self-governing supervision. (Zolotová et al., 2020) Large-scale product customization requires companies to swiftly react to customer demands, flexibly reorganize equipment and calibrate operational specifications for accidental system breakdowns and product quality issues (Duşmănescu et al., 2016), and modernize obsolete systems with cutting-edge technologies. (Kim et al., 2020)

# 3. Methodology and Empirical Analysis

Building our argument by drawing on data collected from Capgemini, Deloitte, McKinsey, MHI, we.CONECT, and World Economic Forum, we performed analyses and made estimates regarding the relationship between product decision-making information systems, real-time big data analytics, and deep learning-enabled smart process planning. Data collected from 4,600 respondents are tested against the research model by using structural equation modeling.

# 4. Results and Discussion

The workplace monitoring system advances towards adjustable smart manufacturing (Lăzăroiu, 2018; Lăzăroiu et al., 2020a, b; Mihăilă, 2017; Moghtader, 2018; Pilkington, 2018; Popescu et al., 2019) through heterogeneous customer requirements. (Li et al., 2020) To scale up the machine learning patterns for data inspection, huge volumes of data are needed to train them and facilitate incessant model updates. (Lewis Bowler et al., 2020) (Tables 1–8)



17

 Table 1 % of contributors to success with data and analytics (asked of those who reported being effective at meeting objectives)

| Constructing a strategy to pursue data and analytics            | 36 |
|-----------------------------------------------------------------|----|
| Ensuring senior-management leadership of analytics              | 33 |
| Designing effective data architecture/technology infrastructure | 26 |
| to support analytics activities                                 |    |
| Developing a workforce that understands how to use analytics    | 25 |
| Getting business users to apply analytics insights              | 22 |
| consistently in day-to-day work.                                |    |
|                                                                 |    |

Sources: McKinsey; our survey among 4,600 individuals conducted June 2020.

 Table 2 What advantages/optimizations do you expect for your company through Industry 4.0/Industrial Internet of Things? (%)

| Increased efficiency   | 42 |
|------------------------|----|
| Competitiveness        | 27 |
| Increased productivity | 24 |
| Faster decision-making | 19 |
| Reduction of costs     | 14 |
| Increase in sales      | 9  |
| Increase in quality    | 7  |
| aa                     |    |

Sources: we.CONECT; our survey among 4,600 individuals conducted June 2020.

#### Table 3 Which topics/production areas will become more important

in your company in the next 12 months? (%)

| Big data/Data analytics            | 29 |
|------------------------------------|----|
| Cloud/Internet of Things platforms | 19 |
| Operational excellence             | 17 |
| Production: IT/MES                 | 14 |
| Human machine collaboration        | 12 |
| Robotics                           | 11 |
| Sensor/Automation technology       | 10 |
| Cyber security                     | 9  |
| Additive manufacturing             | 6  |
| Predictive maintenance             | 7  |

Sources: we.CONECT; our survey among 4,600 individuals conducted June 2020.

#### **Table 4** Actions taken in preparation for the changes in the next 10 years (%)

| <b>Tuble</b> The using union in proparation for the enanges in the next To Jeans (70) |    |
|---------------------------------------------------------------------------------------|----|
| Partnering with vendors to better understand applications and benefits                | 52 |
| Began piloting new technologies                                                       | 48 |
| Increased investment/budget for innovative technologies                               | 45 |
| Recruiting for different skillsets to align with future needs                         | 42 |
| Changing organizational structure/incentives to create innovation culture             | 39 |
| Reskilling and training workers for emerging technologies                             | 36 |
|                                                                                       |    |

Sources: MHI; Deloitte; our survey among 4,600 individuals conducted June 2020.



 Table 5 The most valuable 5G-enabled use cases

| for shop floor and supply chain areas (%)                      |    |
|----------------------------------------------------------------|----|
| Real-time analytics leveraging edge computing                  | 87 |
| Video surveillance of remote production lines                  | 84 |
| Remote control of distributed production line                  | 82 |
| Artificial intelligence-enabled and remote-controlled motion   | 79 |
| (e.g., collaborative robots, self-driven cars, drones)         |    |
| Real-time service and breakdown alerts                         | 77 |
| Remote operations/maintenance/training solutions through AR/VR | 75 |
| Predictive/preventive maintenance                              | 73 |
| Self-triggered order placement based on inventory level        | 82 |
| Virtual testing of parts and packing from suppliers            | 80 |
| Remote monitoring of en-route shipment                         | 77 |
| conditions (e g., temperature, humidity)                       |    |

Sources: Capgemini; our survey among 4,600 individuals conducted June 2020.

**Table 6** Industry 4.0 priorities on which organizations have made progress by having comprehensive holistic strategies (%)

| by having comprehensive, holistic strategies (%)                          |    |
|---------------------------------------------------------------------------|----|
| Protecting our organization from disruption                               | 79 |
| Developing innovative/differentiated products and services                | 64 |
| Finding growth opportunities for existing products and services           | 62 |
| Making effective Industry 4.0 technology investments                      | 80 |
| Connected, integrated approach to implement Industry 4.0 technologies     | 57 |
| Attracting and retaining the right talent                                 | 59 |
| Understanding what skills will be needed                                  | 76 |
| Training and developing workforce                                         | 78 |
| Utilizing new labor models                                                | 82 |
| Making a profit while positively contributing to society                  | 74 |
| Investing in Industry 4.0 tech with a positive societal impact            | 62 |
| Sources: Deloitte, our survey among 4,600 individuals conducted lung 2020 |    |

Sources: Deloitte; our survey among 4,600 individuals conducted June 2020.

Table 7 Projected (2022) strategies to address shifting skills needs,

by proportion of companies (%, likely)

| Hire new permanent staff with skills relevant to new technologies           | 86 |
|-----------------------------------------------------------------------------|----|
| Look to automate the work                                                   | 84 |
| Retrain existing employees                                                  | 69 |
| Expect existing employees to pick up skills on the job                      | 68 |
| Outsource some business functions to external contractors                   | 67 |
| Hire new temporary staff with skills relevant to new technologies           | 65 |
| Hire freelancers with skills relevant to new technologies                   | 57 |
| Strategic redundancies of staff who lack the skills to use new technologies | 50 |

Sources: World Economic Forum; our survey among 4,600 individuals conducted June 2020.



 Table 8 % of challenges to success with data and analytics (asked of those who reported being ineffective at meeting objectives)

| who reported being meneeuve at meeting objectives)                          |    |
|-----------------------------------------------------------------------------|----|
| Constructing a strategy to pursue data and analytics                        | 42 |
| Designing effective data architecture/technology infrastructure             | 33 |
| to support analytics activities                                             |    |
| Securing talent with skills required to develop data and analytics projects | 27 |
| Ensuring senior-management leadership of analytics                          | 26 |
| Developing a workforce that understands how to use analytics                | 20 |
|                                                                             |    |

Sources: McKinsey; our survey among 4,600 individuals conducted June 2020.

### 5. Conclusions and Implications

Machine learning procedures necessitates massive quantities of quality training datasets, while concerning supervised machine learning, manual input is routinely needed for labeling them. (Alexopoulos et al., 2020) The volume of data gathered and distributed has improved both predictive precision and enablement of prescriptive solutions. (Schniederjans et al., 2020)

### Survey method

The interviews were conducted online and data were weighted by five variables (age, race/ethnicity, gender, education, and geographic region) using the Census Bureau's American Community Survey to reflect reliably and accurately the demographic composition of the United States. Sampling errors and test of statistical significance take into account the effect of weighting. Stratified sampling methods were used and weights were trimmed not to exceed 3. Average margins of error, at the 95% confidence level, are +/-2%. For tabulation purposes, percentage points are rounded to the nearest whole number. The precision of the online polls was measured using a Bayesian credibility interval. An Internet-based survey software program was utilized for the delivery and collection of responses.

#### Data and materials availability

All research mentioned has been published and data is available from respective outlets.

### Funding

This paper was supported by the Slovak Research and Development Agency under Grant no. APVV-17-0546: Variant Comprehensive Model of Earnings Management in Conditions of The Slovak Republic as an Essential Instrument of Market Uncertainty Reduction.

#### **Author contributions**

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

#### **Conflict of interest statement**

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



#### REFERENCES

- Alexopoulos, K., Nikolakis, N., and Chryssolouris, G. (2020). "Digital Twin-driven Supervised Machine Learning for the Development of Artificial Intelligence Applications in Manufacturing," *International Journal of Computer Integrated Manufacturing* 33(5): 429–439.
- Andrei, J.-V., Mieilă, M., Popescu, G. H., Nica, E., and Manole, C. (2016a). "The Impact and Determinants of Environmental Taxation on Economic Growth Communities in Romania," *Energies* 9(11): 902.
- Andrei, J.-V., Ion, R. A., Popescu, G. H., Nica, E., and Zaharia, M. (2016b). "Implications of Agricultural Bioenergy Crop Production and Prices in Changing the Land Use Paradigm – The Case of Romania," *Land Use Policy* 50: 399–407.
- Andrei, J. V., Popescu, G. H., Nica, E., and Chivu, L. (2020). "The Impact of Agricultural Performance on Foreign Trade Concentration and Competitiveness: Empirical Evidence from Romanian Agriculture," *Journal of Business Economics* and Management 21(2): 317–343.
- Culot, G., Orzes, G., Sartor, M., and Nassimbeni, G. (2020). "The Future of Manufacturing: A Delphi-based Scenario Analysis on Industry 4.0," *Technological Forecasting and Social Change* 157: 120092.
- Duşmănescu, D., Andrei, J.-V., Popescu, G. H., Nica, E., and Panait, M. (2016). "Heuristic Methodology for Estimating the Liquid Biofuel Potential of a Region," *Energies* 9(9): 703.
- Hoffman, S. F., and Friedman, H. H. (2018). "Machine Learning and Meaningful Careers: Increasing the Number of Women in STEM," *Journal of Research in Gender Studies* 8(2): 11–27.
- Kim, D.-Y., Park, J.-W., Baek, S., Park, K.-B., Kim, H.-R., Park, J.-I., et al. (2020).
  "A Modular Factory Testbed for the Rapid Reconfiguration of Manufacturing Systems," *Journal of Intelligent Manufacturing* 31: 661–680.
- Krizanova, A., Lăzăroiu, G., Gajanova, L., Kliestikova, J., Nadanyiova, M., and Moravcikova, D. (2019). "The Effectiveness of Marketing Communication and Importance of Its Evaluation in an Online Environment," *Sustainability* 11: 7016.
- Lăzăroiu, G. (2018). "Postmodernism as an Epistemological Phenomenon," *Educational Philosophy and Theory* 50(14): 1389–1390.
- Lăzăroiu, G., Pera, A., Ștefănescu-Mihăilă, R. O., Mircică, N., and Neguriță, O. (2017). "Can Neuroscience Assist Us in Constructing Better Patterns of Economic Decision-Making?," *Frontiers in Behavioral Neuroscience* 11: 188.
- Lăzăroiu, G., Andronie, M., Uţă, C., and Hurloiu, I. (2019). "Trust Management in Organic Agriculture: Sustainable Consumption Behavior, Environmentally Conscious Purchase Intention, and Healthy Food Choices," *Frontiers in Public Health* 7: 340.
- Lăzăroiu, G., Neguriță, O., Grecu, I., Grecu, G., and Mitran, P. C. (2020a). "Consumers' Decision-Making Process on Social Commerce Platforms: Online Trust, Perceived Risk, and Purchase Intentions," *Frontiers in Psychology* 11: 890.
- Lăzăroiu, G., Ionescu, L., Uță, C., Hurloiu, I., Andronie, M., and Dijmărescu, I. (2020b). "Environmentally Responsible Behavior and Sustainability Policy Adoption in Green Public Procurement," *Sustainability* 12(5): 2110.



21

- Lewis Bowler, A., Bakalis, S., and Watson, N. J. (2020). "A Review of In-line and On-line Measurement Techniques to Monitor Industrial Mixing Processes," *Chemical Engineering Research and Design* 153: 463–495.
- Li, J., Chen, D., Peng, Y.-S., Zhang, Z., Tian, Y., Al-Nabhan, N. et al. (2020). "Using Cloud Computing Technology to Design and Implementation of Smart Shop Floor Control System," *Journal of Ambient Intelligence and Humanized Computing*. doi: 10.1007/s12652-020-02040-9.
- Majerova, J., Sroka, W., Krizanova, A., Gajanova, L., Lăzăroiu, G., and Nadanyiova, M. (2020). "Sustainable Brand Management of Alimentary Goods," *Sustainability* 12(2): 556.
- Mihăilă, R. (2017). "The Lying Epidemic," *Educational Philosophy and Theory* 49(6): 580–581.
- Mihăilă, R., Kovacova, M., Kliestikova, J., Kliestik, T., and Kubala, P. (2018). "Deconstructing Masculinist Power Politics in Society: Oppression, Control, and Domination," *Contemporary Readings in Law and Social Justice* 10(1): 158–164.
- Moghtader, B. (2018). "Pastorate Power, Market Liberalism and a Knowing without Knowing," *Knowledge Cultures* 6(1): 18–35.
- Nica, E., Popescu, G. H., Nicolăescu, E., and Constantin, V. D. (2014). "The Effectiveness of Social Media Implementation at Local Government Levels," *Transylvanian Review of Administrative Sciences* 10(SI): 152–166.
- Nica, E. (2015). "Labor Market Determinants of Migration Flows in Europe," *Sustainability* 7(1): 634–647.
- Pilkington, O. A. (2018). "Presented Discourse in Popular Science Narratives of Discovery: Communicative Side of Thought Presentation," *Linguistic and Philosophical Investigations* 17: 7–28.
- Popescu, G. H. (2014). "FDI and Economic Growth in Central and Eastern Europe," Sustainability 6(11): 8149–8163.
- Popescu, G. H., Petrescu, I. E., and Sabie, O. M. (2018a). "Algorithmic Labor in the Platform Economy: Digital Infrastructures, Job Quality, and Workplace Surveillance," *Economics, Management, and Financial Markets* 13(3): 74–79.
- Popescu, G. H., Mieilă, M., Nica, E., and Andrei, J.-V. (2018b). "The Emergence of the Effects and Determinants of the Energy Paradigm Changes on European Union Economy," *Renewable and Sustainable Energy Reviews* 81(1): 768–774.
- Popescu, G. H., Andrei, J. V., Nica, E., Mieilă, M., and Panait, M. (2019). "Analysis on the Impact of Investments, Energy Use and Domestic Material Consumption in Changing the Romanian Economic Paradigm," *Technological and Economic Development of Economy* 25(1): 59–81.
- Reicher, Z. R. (2019). "Opportunities for Small and Medium Sized Enterprises in the Field of Corporate Social Responsibility," *Ekonomicko-manazerske spektrum* 13(1): 26–37.
- Schniederjans, D. G., Curado, C., and Khalajhedayati, M. (2020). "Supply Chain Digitisation Trends: An Integration of Knowledge Management," *International Journal of Production Economics* 220: 107439.
- Zolotová, I., Papcun, P., Kajáti, E., Miškuf, M., and Mocnej, J. (2020). "Smart and Cognitive Solutions for Operator 4.0: Laboratory H-CPPS Case Studies," *Computers & Industrial Engineering* 139: 105471.



Reproduced with permission of copyright owner. Further reproduction prohibited without permission.

